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Fullwave Analysis of Planar Microwave Circuits by
Integral Equation Methods and Bilinear
Transformations

Andreas Janhsen, Burkhard Schiek and Volkert Hansen

" Abstract—Planar microwave circuits are simulated by a mixed space-
spectral domain integral method which allows the consideration of
space-varying impedances. For an efficient computation of scattering
parameters of circuits containing lumped elements within this full wave
analysis, a bilinear transformation is used. Furthermore, by this so-
called Mobius transformation it is possible to decide whether an
impedance region of finite size can be interpreted as a lumped element
or not.

I. INTRODUCTION

Since the eatly 80’s there is an increasing interest in the inves-
tigation of planar microwave circuits based on a numerical solution

of Maxwell’s equations. These methods can be roughly devided -

into two groups:

The simulation of microwave circuits by finite differences (e.g.,
[1]), finite elements (e.g., [2]), by the transmission line method
(e.g., [3]) and similar methods is advantageous for circuits with
complicated shapes, because these techniques are based on a three-
dimensional discretisation of the metallization of the circuit as well
as of the dielectric structure. Lumped impedance elements, space
varying conductivity and a finite thickness of the metallisation can
be considered. However, an enormous numerical expense is nec-
essary because of discretising in all three dimensions. Thus, these
methods are mainly used for circuit simulations where the dimen-
sions of the geometry are in the range of a wavelength. Radiation
of the circuit into free space can only be considered approximately.

The second group includes the integral equation techniques (e.g.,
[41-[6]) and in the broadest sense the method of lines [7]. Here,
the three-dimensional discretization is reduced to a two-dimen-
sional one. Therefore, the dielectric layers are described by their
Green’s function. The expenditure of analytical and program-tech-
nical preparation yields an efficient computation of the circuits for

Manuscript received August 13, 1991; revised March 6, 1992.

The authors are with the Institut fir Hochfrequenztechnik, 1C6/134,
Ruhr-Universitat Bochum, 4630 Bochum, Germany.

IEEE Log Number 9200459.

1581

which the assumption of a plane layered dielectric environment is
valid. Defining ideal electric or magnetic sidewalls surrounding the
circuit, FFT algorithms (e.g. [8]) can be used advantageously. Fi-
nite conductivity and a finite thickness of the metallisation can be
considered approximately defining a surface impedance. A method
for the simulation of active and/or passive lumped elements within
the integral equation techniques is described in [9]. This approach
can be generalized to space-varying surface impedances [10].

The latter will be discussed in this paper. First a general model
for circuits embedded in layered dielectric media will be intro-
duced. Subsequently an integral equation technique of planar mi-
crowave circuits including space varying surface impedances is
shortly outlined. The correlation of port-quantities, e.g., scattering
parameters, and circuit terminals, e.g., lumped impedances, is cre-
ated with the help of a bilinear transform. This leads to an efficient
computation of scattering parameters of circuits containing lumped
elements. Furthermore, it becomes possible to give a measure for
the numerical validity of calculated scattering parameters and an
indicator is definable, by which it can be decided whether an
impedance region of finite size can be interpreted as a lumped ele-
ment or not. By several examples the efficiency of this method is
illustrated.

II. MopEeL AND INTEGRAL EQUATION

The multiport circuit which is to be analyzed is embedded in a
layered dielectric medium (Fig. 1). By this model not only mi-
crostrip circuits with or without a superstrate but also stripline,
coplanar and similar structures can be examined.

The surface current density J(x, y) on the metallic structure is
represented by a sum over N piecewisely defined basis functions
f.(x, y) with current amplitudes I,

FACH)) 7
b" ns

where b, is the width of the nth current mode. The number of basis
functions depends on the complexity of the circuit.

-The electric field has to fulfill the surface impedance boundary
condition on the circuit (see e.g. [11]):

E@, lan = Zoalt, DI, ) + E* . ®
The space-varying surface impedance consists of two parts

. N
Jx,y) = 21, (1

Ziw(x, y) = Z; + Zx, y). 3)

Thus, in addition to a finite conductivity Z, which represents the
overall conductor losses, we have a space-varying surface imped-
ance Z(x, y). By this space-varying surface impedance different
kinds of metallisation can be modeled (e.g. a superconductive film)
or/and we can model impedances of finite size or infinite small
size. Introducing a Green’s function of the stratified dielectric
structure an integral equation can be obtained which is formulated
in the spectral-domain as well as in the space-domain [9], [10].
Applying the method of moments we get the following set of linear
equations:

N
LIZ, ~Z))y=V, with j=1,---,N+L @

1 e o
Z; = 47l'2 Skr Sk u;(G(kxa ky) — 2z, 1)a,

Fy ke, k) F) (ke ky)
b;b,

k, dk ®

X y?
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Fig. 1. Planar multiport circuit in a layered dielectric medium (example).

z7 = S S i, i, Z(x, y)fL-———(x’ N y )dxdy. ©6)

b;b;
F(k,, k) is the Fourier transform of the basis function f{x, y) G(kx,
ky) is the Fourier transform of the Green’s function G(r F).V
represents the excitation of the circuit and will not be discussed
here.

In most cases, the calculation of the elements Z; and V; is very
time consuming. In contrast to this, the matrix elements Z;y can be
obtained analytically. A variation of the space-varying impedance
changes only the elements Z}‘,-y and the matrix equation can be re-
written easily. The only time consuming part remains in solving
the linear equations. Nevertheless, for large matrices and/or many
different values of the lumped elements, this method is often too
slow. Therefore in the next part, a bilinear transformation is used,
by which the computation time can be reduced substantially.

III. THE BILINEAR TRANSFORMATION

Microwave circuits are mainly characterized by their scattering
parameters (port quantities). Lumped elements like impedances are
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Fig. 2. L-port circuit excluding the element Z,.

we get

_ a’Zk + b’

= . 9
Y C’Zk+1 ()

Thus, we have a relation between the terminal element Zk and the
scattering parameter S;;.

For complex quantities related by the Mébius transformation one
can deduce the following invariance property of the double-cross-
ratio ([13]):

(S,(‘jl) - S@)(S@ — Sl(.j‘.“) ~ @M — ZOY@P -z
SP = sy — s - @~ zhep - zo) ¥

Thus, (10) connects m = 1, , 4 values of scattering parameters
S{™, which describe the electromagnetic behavior between the ports
jand i, withm = 1, , 4 values of the lumped element Z{™ of
the kth terminal. For the variation of the value of a single lumped
element Z, = Z{¥ of a circuit, one has to calculate the scattering
parameters for three different values of this lumped element by the
matrix equation (4). For each additional value of the lumped ele-
ment Z, the scattering parameter S;; can simply be obtained using

_SPEP - sPYEP - 2@ - ZP) - SPEP - SPYEP - 2@ — Z) a
T =SP - sPH@E -z @R -z + P - SPHYE - 20@R - Z2)

-to be seen as terminal quantities because only by this formulation
an impedance can be written as the quotient between a voltage and
a current.

For an arbitray L-port (Fig. 2) the relation between scattering
parameters of the ports j and { on one side and the k’s terminal
element Z; of the circuit on the other side is deduced from a bilinear
transformation [12]. Usually, this so called M&bius transformation
is used for ‘‘large scale sensitivity analysis’’ of networks in terms
of currents, voltages and impedances, but as shown in the follow-
ing text it is also applicable to the calculation of scattering param-
eters obtained by the solution of the integral equation (4): Defining
the terminal k as an auxiliary port, the reflection coefficient T' of
this port is connected with the scattering parameter S; by

all + b
Si =T + 1 M
By the substitution
Z, — Z,
I =7 ®)

L+ 7

which follows from (10). It is remarkable that even the scattering
parameters given by this procedure are solutions of the electro-
magnetic boundary problem and take e.g. the radiation of the cir-
cuit into consideration. o

Solving (4) form =1, , 4 different values for the kth imped-
ance Z{™ one can establish two simple numerical tests for scatter-
ing parameters:

e Fora strucfure which contains lumped elements, (10) must be
fulfilled exactly. Thus such a structure and (10) can be used
to check roughly the accuracy of a numerical solution via the

following:
SP =SSP — s
a= (S,(-jl) — Sl(,j‘_*))(sl(;) — Sl(,jZ))
p = C = ZY@P ~ 7))
@ - 2@ - zP)

D(s;) = ‘1 - 9‘ L0. (12)

b
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¢ Using numerical calculations which are known to be precise it
can be determined by (12), whether a circuit element can be
taken as a ‘‘lumped.element’’ or not. In other words, whether
the dimensions are ‘‘small’’ compared to the wavelength. De-
tailed investigations show, that for impedances in the range
up to [Z] = 100 Q a value of D(S;) < 0.1 leads to-a phase
error of less than 13° and an error in the magnitude of less
than 4% compared to the scattering parameters of lumped ele-
ments.

1V. APPLICATIONS TO MICROSTRIP CIRCUITS

The definition of a lumped element of microstrip circuits requires
that the geometric dimensions of a terminal must not result in a
phase shift. Thus, neglecting the transverse current distribution,
for microstrip lines a terminal can be defined by a line transverse
to-the current.

The application of the cross-ratio (10) to scattering parameters
for a variation of the value of one terminal element is illustrated
by the example of a microstrip line with a series impedance Z (Fig.
3). We distinguish between two cases: For an impedance Z in the

range from 0 Q to 600 Q the scattering parameters ST are calcu-

lated using (4), first. For a second calculation of S“ we take the
values

STtz = 10 Q), Bis 70 — 150 Q) and ST(Z® = 500 Q)

and obtain the scaitering parameters ST for all other values of Z .

simply by (11). Fig. 3 shows the d1ﬂ°erence |STE — ST for two
impedance regions of different length s. For a lme impedance (s =
0) (equivalent to a lumped element) the differences between the
results ‘obtained by the matrix equation (4) and by the Mdbius
transform (11) are in the range of 10”7 and can be neglected (Fig.
3 solid line, enlarged by 5000). But even for a small length of the
impedance region (s = 0.2 mm) the accuracy of the scattering pa-
rameters obtained by (11) is better than 1073, For these calcula-
tions the surface impedancés. Z&), have been chosen in such a way,
that the overall impedance of the region is equal to the value of the
line impedance, that means

. N W .
Zoe =20~ - (13)

For a length of s = 0.4 mm the error increases by 100% (not shown .

in Fig. 3). ‘

‘In a further calculation the relation between the length of s of an
impedance region and the error which results using (11) is inves-
tigated by (12). The geometry is identical to Fig. 3. For imped-
ances Z. =50 Q, Z% = 250 0, Z® = 500 @ and Z¥ = o
—the latter is simulated by a gap— D(S;;) and D(S;;) are shown

in Fig. 4 as a function of the length s. In order to get comparable .

- results again the used surface impedance is chosen according (13).
Note that the crosstalk across the gap is considered solving the
electromagnetic boundary problem. The increasing error for an in-
creasing length of the impedance region is rather obvious. This
means, that the assumption of lumped elements, the M8bius trans-

- formation is based on, fails for an increasing length s and the cir-
cuit impedance has no longer the electromagnetic behaviour of a
lumped element. '

"~ Fig. 5 shows the scattering parameter S11 of an asymmetric
T-junction. For a variation of the value of a line impedance Z in
the range from 0-200 Q the best matching is obtained for Z = 17
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Fig. 3. Difference between scattering parameters obtained by (4) and (11).
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Fig; 4. Error of scattering parameters obtained by the double-cross-ratio
(10) caused by an impedance region of finite size (see (12)).
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Fig. 5. Reflection of a asymmetricazl T-junctipn for-a variable impedahce,
1 ’
Q. This calculation is based on the scatteringvparameters
STR@EZO = 0 Q), STEZ® = 150 Q) and sm‘(z<3> = 500 Q).
(14)

For all other values of the impedance Z equation (11) is used.
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A High Frequency Model Based On The Physical
Structure Of The Ceramic Multilayer Capacitor

L. C. N. de Vreede, M. de Kok, C. van Dam, and J. L. Tauritz

~ Abstract—In this paper modelling of the high frequency behavior of

ceramic multilayer capacitors based on device physics is presented. An
accurate predictive model incorporating physical dimensions, material
constants and aspects of the CMC application environment is pre-
sented. This model is suitable for use in the design and development of
improved high frequency CMC structures.

1. INTRODUCTION

The physicai modellirig described in the following is primarily
intended for the designer of high frequency ceramic multilayer ca-
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Fig. 1. Cross-section of CMC.

pacitors (CMC’s). Secondarily, users of CMC’s can gain insight
into the optimal placement of CMC’s in their application environ-
ment.

II. THE MODEL

" In 1991 Perna proposed a simple resonant folded transmission
line model for a CMC mounted in series in a transmission line [1].
In 1987 Ingalls and Kent reexamined Perna’s folded line model {2].
They tried to give the model a more rigorous basis and measured
devices using the latest VNA’s. This study has resulted in a more
fundamental predictive model which has subsequently been proven
in practice.

The structure under study is that of the intrinsic CMC mounted
in an application environment as given in Fig. 1. It is clear from
the figure that the capacitor conceptually consists of the following
three regions:

connection of the electrodes and the metal-
lization.

interface between the terminations and the
central capacitive region.

this is the actual capacitor consisting of a
rectangular block of ceramic dielectric in
which a number of interleaved precious-
metal electrodes have been chosen to yield
high capacitance per unit volume.

The terminations:
The interconnects:

The capacitive part:

Transformation to an equivalent circuit model may be made by
treating the electrodes and the terminations as multiconductor sec-
tions. This requires the accurate calculation of the multiconductor
parameters. The device simulator PISCES has been used to carry
out these computations {3]. In our case its use is limited to the
calculation of the capacitance per unit length between the conduc-
tors. These conductors are entered into the program as cross-sec-
tions separated by ideal insulating materials whose dielectric con-
stants correspond to those of the CMC under consideration.
Solutions are found in a two dimensional plane which somewhat
restricts the validity of the model for complicated structures at
higher frequencies (i.e. a 100 pF capacitor with 6 plates is accu-
rately modelled up to 10 GHz, a similar 330 pF capacitor model is
accurate up to about 9 GHz). This restriction lies in the fact that
there are a small number of three dimensional discontinuity regions
which can not be accurately calculated in this way.

Keeping these restrictions in mind, we can transform the physi-
cal structure into a HF equivalent circuit as shown in Fig. 2. In the
capacitive section each electrode is represented by a conductor ref-
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