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Fullwave Analysis of Planar Microwave Circuits by
Integral Equation Methods amd Billinear

Transformations

Andreas Janhsen, Burkhard Schick and Volkert Hansen

Abstract–.Planar microwave circuits are simulated by a mixed space-

spectral do]main integral method which allows the consideration of

space-varying impedances. For an efficient computation of scattering
parameters of circuits containing lumped elements within this full wave

analysis, a bilinear transformation is used. Furthermore, by this so-
called Mobius transformation it is possible to decide whether an

impedance region of finite size can be interpreted as a lumped element
or not.

I. INTRODUCTION

Since the early 80’s there is an increasing interest in the inves-

tigation of planar microwave circuits based on a numerical solution

of Maxwell’s equations. These methods can be roughly devided

into two groups:

The simulation of microwave circuits by finite dfMerences (e.g.,

[1]), finite elements (e.g., [2]), by the transmission line method

(e.g., [3]) and similar methods is advantageous for circuits with

complicated shapes, because these techniques are based on a three-

dirnensional discretisation of the metallization of the circuit as well

as of the dielectric structure. Lumped impedance elements, space

varying conductivity and a finite thickness of the metallisation can

be considered. However, an enormous numerical expense is nec-

essary because of discretising in all three dimensions. Thus, these

methods are mainly used for circuit simulations where the dimen-

sions of the geometry are in the range of a wavelength. Radiation

of the circuit into free space can only be considered approximately.

The second group includes the integral equation techniques (e.g.,

[4]-[6]) and in the broadest sense the method of lines [7]. Here,

the three-dimensional discretization is reduced to a two-dimen-

sional one. Therefore, the dielectric layers are described by their

Green’s function. The expenditure of analytical and program-tech-

nical preparation yields an efficient computation of the circuits for
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which the assumption of a plane layered dielectric environment is

valid. Defining ideal electric or magnetic sidewalls surrounding the

circuit, FFT algorithms (e.g. [8]) can be used advantageously. Fi-

nite conductivity and a finite thickness of the metallisation can be

considered approximately defining a surface impedance. A method

for the simulation of active and/or passive lumped elements within

the integral equation techniques is described in [9]. This approach

can be generalized to space-varying surface impedances [10].

The latter will be discussed in this paper, First a general model

for circuits embedded in layered dielectric media will be intro-

duced. Subsequently an integral equation technique of planar mi-

crowave circuits including space varying surface impedances is

shortly outlinedl. The correlation of port-quantities, e.g., scattering

parameters, ancl circuit terminals, e.g., lumped impedances, is cre-

ated with the help of a bilinear transform. This leads to an efficient

computation of scattering parameters of circuits containing lumped

elements. Furthermore, it becomes possible to give a mea”sure for

the numerical validity of calculated scattering parameters and an

indicator is definable, by which it can be decided whether an

impedance region of finite size can be interpreted as a lumped ele-

ment or not. By several examples the efficiency of this method is

illustrated.

II. MODEL AND INTEGRAL EQUATION

The multiport circuit which is to be analyzed is embedded in a

layered dielectric medium (Fig. 1). By this model not only mi-

crostrip circuiis with or without a superstrata but also stripline,

coplanar and similar structures ~an be examined.

The surface current density .T(x, y) on the metallic structure is

represented by a sum over N piecewisely defined basis functions

f. (x, y) with current amplitudes 1.:

N fn(x, y) ~
7(X, y) = x 1. -j-- ~,

n n
(1)

where b. is the width of the nth current mode. The number of basis

functions depends on the complexity of the circuit.

The electric field has to fulfill the surface impedance boundary

condition on the circuit (see e.g. [11]):
-. +’
lxx, Y)[m. = .%(x, Y)J(x, Y) + ~exL“. (2)

The space-varying surface impedance consists of two parts

Ztot(x, y) = Zc + z(x, y). (3)

Thus, in additiott to a finite conductivity Z= which represents the

overall conductor losses, we have a space-varying surface imped-

ance Z(x, y). By this space-varying surface impedance different

kinds of metallisation can be modeled (e.g. a superconductive film)

orland we can model impedances of finite size or infinite small

size. Introducing a Green’s function of the stratified dielectric

structure an integral equation can be obtained which is formulated

in the spectral-domain as well as in the space-domain [9], [10].

Applying the method of moments we get the following set of linear

equations:

fIl(Zj,-Z~)=~ witij=l, ”””, N+L. (4)
1 (

1

s!‘ji = ~ k. k,
~J(f3% J$!) — .zc~ ) z

F,(kX, kY)F~(k.. ky) ~k ~k

bib]
x Y~ (5)
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Fig. 1. Planar multiport circuit in a layered dielectric medium (example).

z; = u f(x> Y)$(x, Y)
izjiiiZ(X> y)

bi bj
dx dy. (6)

x Y

F(kl, kY) is the Fourier transform of the basis function~x, y), &kx,

k,) is the Fourier transform of the Green’s function G(7, ~‘ ). V

represents the excitation of the circuit and will not be discussed

here.

In most cases, the calculation of the elements Zii and Vi is very

time consuming. In contrast to this, the matrix elements Z? can be

obtained analytically. A variation of the space-va~ing impedance

changes only the elements Z~y and the matrix equation can be re-

written easily. The only time consuming part remains in solving

the linear equations. Nevertheless, for large matrices andlor many

different values of the lumped elements, this method is often too

slow. Therefore in the next part, a bilinear transformation is used,

by which the computation time can be reduced substantially.

III. THE BILINEAR TRANSFORMATION

Microwave circuits are mainly characterized by their scattering

parameters (port quantities). Lumped elements like impedances are

port 1

port i

port j

port L

L–port

circuit
excluding
the
element

‘k

Fig. 2. L-port circuit excluding the element Zi.

we get

Sq =
arZ~+b’

c’zk + 1 “
(9)

Thus, we have a relation between the terminal element Z~ and the

scattering parameter SY.

For complex quantities related by the Mobius transformation one

can deduce the following invariance property of the double-cross-

ratio ([13]):

(3) _ ~$)] @J) _ Zfa) (.zp – z~4)) (lo)(s;) – sp)(~v

1) – S$))(sy – Sp)(s$ = (Zy – Zf)) (@ – Z\z))

Thus, (10) connectsm = 1, . . . ,4 values of scattering parameters

ST), which describe the electromagnetic behavior between the ports

jandi, within= l,”.”, 4 values of the lumped element Z\m) of

the kth terminal. For the variation of the value of a single lumped

element Z~ = Z~4) of a circuit, one has to calculate the scattering

parameters for three different’ values of this lumped element by the

matrix equation (4). For each additional value of the lumped ele-

ment Z~ the scattering parameter Sti can simply be obtained using

sp(q!) – ~ (3) – Zp) – S$)(stiS(2)) (Zy – z~) (Zk (3) – SF)) (Zp – Zp ) (Zf) – Zk )

so = (11)_(s;) _ SF)) (z~u – @)(z\3) –. .zk) + (s;) – s;)) (Zp – -%)(.213)– 42))

to be seen as terminal quantities because only by this formulation

an impedance can be written as the quotient between a voltage and

a current.

For an arbitray L-port (Fig. 2) the relation between scattering

parameters of the ports j and i on one side and the k’s terminal

element Z~ of the circuit on the other side is deduced from a bilinear

transformation [12]. Usually, this so called Mobius transformation

is used for “large scale sensitivity analysis” of networks in terms

of currents, voltages and impedances, but as shown in the follow-

ing text it is also applicable to the calculation of scattering param-

eters obtained by the solution of the integral equation (4): Defining

the terminal k as an auxilia~ port, the reflection coefficient 17 of

this port is connected with the scattering parameter Sti by

ar+b
sq=—

Cr+l”

By the substitution

Zk – Z.
r=—

z~+.z$

(7)

(8)

which follows from (10). It is remarkable that even the scattering

parameters given by this procedure are solutions of the electro-

magnetic bounda~ problem and take e.g. the radiation of the cir-

cuit into consideration.

Solving (4) for m = 1,“.0,4different values for the kth imped-

ance Z~m) one can establish two simple numerical tests for scatter-
ing parameters;

● For a structure which contains lumped elements, (10) must be

fulfilled exactly. Thus such a structure and (10) can be used

to check roughly the accuracy of a numerical solution via the

following:

~=

D(SU ) =

(Sfj!)– 3) – sf))S$y)(sj

(3) – q?))(q!) – Sp)(sti

(Zp – Zp ) (z\’) – Zp )

(z\’) – Z!’)) (Zp – Z\’))

1–:AO. (12)
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● Using numerical calculations which are known to be precise it

can be determined by (12), whether a circuit element can be

taken as a “lumped element” or not. In other words, whether

the dimensions are “small” compared to the wavelength. De-

tailed investigations show, that for impedances in the range

up to IZI = 1000 a value of D(Sij) < 0.1 leads to a phase

error of less than 130 and an error in the magnitude of less

than 4% compared to the scattering parameters of lumped ele-

ments.

IV. APPLICATIONS TO MICROSTRUP CIRCUITS

The definition of a lumped element of microstrip circuits requires

that the geolmetnc dimensions of a terminal must not result in a

phase shift. Thus, neglecting the transverse current distribution,

for microstrip lines a terminal can be defined by a line transverse

to the current.

The applkation of the cross-ratio (10) to scattering parameters

for a variation of the value of one terminal element k illustrated

by the example of a microsttip line with a series impedance Z (Fig.

3). We distinguish between two cases: For an impedance Z in the

range from () Q to 600 Q the scattering parameters S,~~t are calcu-

lated using (4), first. For a second calculation of S1, we take the

values

S~~t(Z(l) = 10 Q), S~t(Z(2) = 150 Q) and S~’(Z(3) = 500 Q)

and obtain the scattering parameters S ~~b for all other values of Z

simply by (11). Fig. 3 shows the difference IS~~t – S~~b I for two

impedance regions of different length s. For a line impedance (s =

O) (equivalent to a lumped element) the differences between the

results obtained by the matrix equation (4) and by the Mobius

transform (11) are in the range of 10-7 and can be neglected (Fig.

3 solid line, enlarged by 5000). .But even for a small length of the

impedance region (s = 0.2 mm) the accuracy of the scattering pa-

rameters obtained by (11) is better than 10-3. For these calcula-

tions the surface impedances Z~~ti have been chosen in such a way,

that the overall impedance of the region is equal to the value of the

line impedance, that means

(13)

For a length ofs = 0.4 mm the error increases by 100 % (not shown

in Fig. 3).

In a further calculation the relation between the length ofs of an

impedance region and the error which results using (11 ) is inves-

tigated by (12). The geometry is identical to Fig. 3. For imped-
ances Z(l) := 50 Q, Z(2) = 250 Q, Z(3) = .500 0 and Z(4) = cdl

—the latter is simulated by a gap— D(S1, ) and D(,Sal ) are shown

in Fig. 4 as a function of the length s. In order to get comparable

results again the used surface impedance is chosen according (13).

Note that the crosstalk across the gap is considered solving the

electromagnetic boundary problem. The increasing error for an in-

creasing length of the impedance region is rather obvious. This

means, that the assumption of lumped elements, the Mobius trans-

fom”ation is based on, fails for an increasing length s and die cir-

cuit impedance has no longer the electromagnetic behaviour of a

lumped element.

Fig. 5 shows the scattering parameter S1, of an asymmetric

T-junction. For a variation of the value of a line impedance Z in

the range from 0-200 Q the best matching is obtained for Z = 17

1
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Fig. 5. Reflecticm of a asymmetrical T-junction for a variable impedance
,4,.

Q. This calculation is based on the scattering parameters

S~~’(Z(l) = O Q), S~~’(Z(2) = 150 Q) and Sflt(Z(3) = 500 Q).

(14)

For all other values of the impedance Z equation (11) is used.
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A High Frequency Model Based On The Physical
Structure Of The Ceramic Multilayer Capacitor

L. C. N. de Vreede, M. de Kok, C. van Dam, and J. L. Tauritz

Abstract—In this paper modelling of the high freqnency behavior of

ceramic multilayer capacitors based on device physics is presented. An
accurate predictive model incorporating physical dimensions, material
constants and aspects of the CMC application environment is pre-
sented. This m’odel is suitable for use in the design and development of
improved high frequency CMC structures.

I. INTRODUCTION

The physical modelling described in the following is primarily

intended for the designer of high frequency ceramic multilayer ca-
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Fig. 1. Cross-section of CMC.

pacitors (CMC’S). Secondarily, users of CMC’S can gain insight

into the optimal placement of CMC’s in their application environ-

ment.

II. THE MODEL

In 1991 Perna proposed a simple resonant folded transmission

line model for a CMC mounted in series in a transmission line [1].

In 1987 Ingalls and Kent reexamined Perrsa’s folded line model [2].

They tried to give the model a more rigorous basis and measured

devices using the latest VNA’S. This study has resulted in a more

fundamental predictive model which has subsequently been proven

in practice.

The structure under study is that of the intrinsic CMC mounted

in an application environment as given in Fig. 1. It is clear from

the figure that the capacitor conceptually consists of the following

three regions:

The terminations: connection of the electrodes and the metal-

Iization.

The interconnects: interface between the terminations and the

central capacitive region.

The capacitive part: this is the actual capacitor consisting of a

rectangular block of ceramic dielectric in

which a number of interleaved precious-

metal electrodes have been chosen to yield

high capacitance per unit volume.

Transformation to an equivalent circuit model may be made by

treating the electrodes and the temlinations as multiconductor sec-

tions. This requires the accurate calculation of the multiconductor

parameters. The device simulator PISCES has been used to carry

out these computations [3]. In our case its use is limited to the

calculation of the capacitance per unit length between the conduc-

tors. These conductors are entered into the program as cross-sec-

tions separated by ideal insulating materials whose dielectric con-

stants correspond to those of the CMC under consideration.

Solutions are found in a two dimensional plane which somewhat

restricts the validity of the model for complicated structures at

higher frequencies (i.e. a 100 pF capacitor with 6 plates is accu-

rately modelled up to 10 GHz, a similar 330 pF capacitor model is

accurate up to about 9 GHz). This restriction lies in the fact that

there are a small number of three dimensional discontinuity regions

which can not be accurately calculated in this way.

Keeping these restrictions in mind, we can transform the physi-

cal structure into a HF equivalent circuit as shown in Fig. 2. In the

capacitive section each electrode is represented by a conductor ref-
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